Corrosión de la Atmosférica
La corrosión atmosférica: es la causa más frecuente de la destrucción de los metales y aleaciones.
El mecanismo de corrosión es de naturaleza electroquímica. El electrolito es una capa de humedad sobre la superficie del metal cuyo espesor varía desde capas muy delgadas (invisibles) hasta capas que mojan perceptiblemente el metal. La duración del proceso de corrosión depende sobre todo del tiempo durante el cual la capa de humedad permanece sobre la superficie metálica.
Los contaminantes atmosféricos de mayor importancia son: partículas suspendidas totales, ozono, monóxido de carbono, dióxido de nitrógeno y dióxido de azufre.
Los agentes contaminantes inorgánicos son generados por los vehículos y las industrias; los orgánicos, por los basureros. Las centrales termoeléctricas, las refinerías y las fábricas de papel contribuyen notablemente con un porcentaje alto de SO2 en la atmósfera; al igual que los automóviles con CO.
El mecanismo de corrosión es de naturaleza electroquímica. El electrolito es una capa de humedad sobre la superficie del metal cuyo espesor varía desde capas muy delgadas (invisibles) hasta capas que mojan perceptiblemente el metal. La duración del proceso de corrosión depende sobre todo del tiempo durante el cual la capa de humedad permanece sobre la superficie metálica.
Como el mecanismo de corrosión es electroquímico, su característica principal es la presencia de un proceso anódico y otro catódico, con un electrólito de resistencia óhmica determinada.
En el proceso anódico el metal se disuelve en la capa del electrolito, en la cual la concentración se eleva hasta la precipitación de un compuesto poco soluble.
En el proceso catódico, bajo la capa de humedad, la mayoría de los metales expuestos a la atmósfera se corroen por el proceso de reducción de oxígeno.
La resistencia óhmica entre las zonas anódica y catódica de las minúsculas pilas de corrosión que se distribuyen sobre el metal es grande cuando el espesor de la capa de humedad es pequeño.
a) Corrosión seca. Se produce en los metales que tienen una energía libre de formación de óxidos negativa.
b) Corrosión húmeda. Requiere de la humedad atmosférica, y aumenta cuando la humedad excede de un valor crítico, frecuentemente por encima del 70%.
c) Corrosión por mojado. Se origina cuando se expone el metal a la lluvia o a otras fuentes de agua.
U
NO de los factores que determina primariamente la intensidad del fenómeno corrosivo en la atmósfera es la composición química de la misma. El S02 y el NaCl son los agentes corrosivos más comunes de la atmósfera. El NaCl se incorpora a la atmósfera desde el mar. Lejos de éste, la contaminación atmosférica depende de la presencia de industrias y núcleos de población, siendo el contaminante principal por su frecuencia de incidencia sobre el proceso corrosivo el dióxido de azufre (S02), proveniente del empleo de combustibles sólidos y líquidos que contienen azufre.
La acción conjunta de los factores de contaminación y los meteorológicos determinan la intensidad y naturaleza de los procesos corrosivos, y cuando actúan simultáneamente, aumentan sus efectos. También es importante mencionar otros factores como las condiciones de exposición, la composición del metal y las propiedades del óxido formado, que combinados entre sí influyen en los procesos de corrosión.
La característica atmosférica más importante que se relaciona directamente con el proceso de corrosión es la humedad, que es el origen del electrolito necesario en el proceso electroquímico.
La figura III.1 muestra la relación que existe entre la corrosión atmosférica y el espesor de la capa del electrolito sobre la superficie metálica. Se observa que en espesores pequeños la corrosión no existe, pues la resistencia óhmica de la capa del electrolito sobre la superficie metálica es muy grande y la disolución del metal es difícil. Al aumentar el espesor disminuyen la resistencia de la capa del electrolito y la polarización catódica, lo que origina un aumento en la velocidad de corrosión hasta que alcanza un nivel máximo, que disminuye después con el aumento del espesor. En esta zona, la reacción catódica es determinante en el proceso de corrosión; el factor óhmico y la polarización anódica pierden importancia, pues la difusión de oxígeno en la superficie metálica es muy lenta y por tanto determinante del proceso global.
Influencia del espesor de la película de humedad condensada sobre la superficie metálica en la velocidad de corrosión.
PRINCIPALES AGENTES CONTAMINANTES PARA LA CORROSION ATMOSFERICA
-Atmosférica
Oxidación Corrosión, Radiación solar, Corrosión marina
-Biológica Corrosión Microbiologíca
-Mecánica Corrosión bajo tensión y relacionadas con fuerzas externas
FORMAS DE EVITAR LA CORROSION
Hay tres métodos para evitar la oxidación del hierro :
Mediante aleaciones del hierro que lo convierten en químicamente resistente a la corrosión
impregnándolo con materiales que reaccionen a las sustancias corrosivas más fácilmente que el hierro, quedando éste protegido al consumirse aquéllas
Recubriéndolo con una capa impermeable que impida el contacto con el aire y el agua.
El método de la aleación es el más satisfactorio pero también el más caro. Un buen ejemplo de ello es el acero inoxidable, una aleación de hierro con cromo o con níquel y cromo. Esta aleación está totalmente a prueba de oxidación e incluso resiste la acción de productos químicos corrosivos como el ácido nítrico concentrado y caliente.
El segundo método, la protección con metales activos, es igualmente satisfactorio pero también costoso. El ejemplo más frecuente es el hierro galvanizado que consiste en hierro cubierto con cinc. En presencia de soluciones corrosivas se establece un potencial eléctrico entre el hierro y el cinc, que disuelve éste y protege al hierro mientras dure el cinc.
El tercer método, la protección de la superficie con una capa impermeable, es el más barato y por ello el más común.
Este método es válido mientras no aparezcan grietas en la capa exterior, en cuyo caso la oxidación se produce como si no existiera dicha capa. Si la capa protectora es un metal inactivo, como el cromo o el estaño, se establece un potencial eléctrico que protege la capa, pero que provoca la oxidación acelerada del hierro.
Los recubrimientos más apreciados son los esmaltes horneados, y los menos costosos son las pinturas de minio de plomo. Algunos metales como el aluminio, aunque son muy activos químicamente, no suelen sufrir corrosión en condiciones atmosféricas normales.
Generalmente el aluminio se corroe con facilidad, formando en la superficie del metal una fina capa continua y transparente que lo protege de una corrosión acelerada.
El plomo y el cinc, aunque son menos activos que el aluminio, están protegidos por una película semejante de óxido.
El cobre, comparativamente inactivo, se corroe lentamente con el agua y el aire en presencia de ácidos débiles como la disolución de dióxido de carbono en agua —que posee propiedades ácidas—, produciendo carbonato de cobre básico, verde y poroso.
Los productos de corrosión verdes, conocidos como cardenillo o pátina, aparecen en aleaciones de cobre como el bronce y el latón, o en el cobre puro, y se aprecian con frecuencia en estatuas y techos ornamentales.
Los metales llamados nobles son tan inactivos químicamente que no sufren corrosión atmosférica. Entre ellos se encuentran los antes indicados, el oro, la plata y el platino.
La combinación de agua, aire y sulfuro de hidrógeno afecta a la plata, pero la cantidad de sulfuro de hidrógeno normalmente presente en la atmósfera es tan escasa que el grado de corrosión es insignificante, apareciendo únicamente un ennegrecimiento causado por la formación de sulfuro de plata. Este fenómeno puede apreciarse en las joyas antiguas y en las cuberterías de plata.
La corrosión en los metales supone un problema mayor que en otros materiales. El vidrio se corroe con soluciones altamente alcalinas, y el hormigón con aguas ricas en sulfatos. La resistencia a la corrosión del vidrio y del hormigón puede incrementarse mediante cambios en su composición, ó técnicas adecuadas.
Antes de describir el ciclo del azufre y el nitrógeno, presentamos una breve noción de la formación de radicales libres, la causa principal de las oxidaciones en la atmósfera.
Estas especies químicas tienen un electrón no apareado en la capa exterior y esto les da afinidad para adicionar un segundo electrón, el que las hace actuar como oxidantes poderosos en las pequeñas concentraciones en que se encuentran. De todos los radicales libres presentes en la atmósfera, el hidróxilo parece ser el de mayor incidencia.
La producción del radical hidroxilo se inicia con la fotólisis del ozono. En la atmósfera superior; el ozono se forma principalmente por acción de la radiación solar sobre el oxígeno molecular:
En la atmósfera inferior, los procesos productores de ozono implican la absorción de radiaciones solares por el dióxido de nitrógeno:
Cuando el ozono absorbe un fotón en las proximidades del ultravioleta, con una longitud de onda menor a 315 nm, se produce un átomo de oxígeno eléctricamente excitado:
La transición O(1D)®O(3P) no es fácil y el átomo de oxígeno excitado, O(1D), tiene tiempo de vida relativamente largo, unos 110 s. En las capas más bajas de la atmósfera puede dar lugar a dos reacciones:
los radicales hidrógeno y metil formados se combinan rápidamente con oxígeno molecular formando radicales hidroperoxil (HO2) y metilperoxil (CH3O2).
aunque también puede llegar a la formación de agua y peróxido de hidrógeno que son arrastrados por la lluvia:
La química del radical hidroperoxil es mucho más compleja y parece ser que por oxidación conduce a la producción de monóxido de carbono, CO.
Los principales compuestos de nitrógeno presentes en la atmósfera son las formas oxidadas NO, N02 y HNO3, que están relacionadas químicamente entre sí por una serie de reacciones cíclicas.
La fuente principal de óxido de nitrógeno atmosférico es la reacción entre el oxígeno y el nitrógeno del aire empleado en procesos de combustión a temperaturas elevadas, el cual es oxidado rápidamente a dióxido, principalmente en presencia de iones hidroperoxil:
Esta reacción no sólo regenera el radical hidroxilo a partir del hidroperoxil, sino que también conduce a la formación de ozono:
Como se ha descrito anteriormente, el NO reacciona también con el ozono para formar N02, y así como el CO produce una disminución del radical OH, el NO ocasiona un aumento de este radical con la correspondiente potenciación de la acción oxidante del medio.
Las mediciones de las especies oxidadas del nitrógeno NO, NO2 y HNO3 indican que la distribución troposférica de las mismas no es afectada fuertemente por focos urbanos, como sucede con el CO. La razón de esta aparente diferencia es la velocidad relativamente rápida a la cual los óxidos de nitrógeno son eliminados a la atmósfera. Después de la emisión a la atmósfera, el NO pasa rápidamente a NO2, según las reacciones descritas. El NO2 reacciona con el radical OH y forma HNO3, el cual es altamente soluble y se elimina fácilmente con la lluvia.
Cuando no hay hidrocarburos en la atmósfera, el ozono reacciona con el NO para formar NO2 y las cantidades de O3 no son significativas. Mas en presencia de radicales orgánicos oxigenados y minerales, el NO se oxida rápidamente a NO2:
X + NO ® ROY + NO2
por lo que el ozono se acumula en el ambiente atmosférico. Los productos de la reacción forman una mezcla compleja de sustancias, en la cual el ozono se encuentra en gran abundancia.
Por reacción del dióxido de nitrógeno con radicales acilperoxil se pueden formar cantidades menos importantes de sustancias como el nitrato de peroxiacetil (PAN):
Un producto que se ha podido identificar en cámaras de smog y que se ha caracterizado como muy estable es el perácido nítrico (HO2 NO2).
En definitiva, se puede decir que el ácido nítrico se forma en la atmósfera por oxidación del dióxido de nitrógeno, principalmente por reacción con el radical hidroxil:
La presión de vapor del ácido nítrico es alta, de manera que no se condensa en cantidades apreciables y permanece en fase gaseosa. La reacción con el amoniaco produce la formación de nitrato de amonio sólido, a humedades relativas del orden de 62%, dando lugar a la formación de aerosoles:
El equilibrio de esta reacción, que depende de la temperatura constituye el proceso de conversión de gas a partículas por la formación de aerosol de nitrato.
El hecho de que la presencia de compuestos de azufre reduzca la calidad del aire y aumente la acidez del agua de lluvia ha provocado un aumento del interés en el conocimiento del ciclo atmosférico del azufre, y aun cuando la química atmosférica de este elemento es complicada y no se conoce a fondo, sí se ha logrado identificar la mayor parte de los compuestos correspondientes.
El principal compuesto de azufre presente en la atmósfera es el dióxido, el cual puede ser introducido directamente a partir de los procesos de combustión de combustibles fósiles o puede provenir de la oxidación de las formas reducidas del azufre, procedentes principalmente de procesos biogénicos (CS2, CH3SCH3, CH3 SSCH3, H2S, etc.). El proceso final es la conversión de SO2 en ácido sulfúrico y la incorporación de este ácido a las gotas de niebla y a los aerosoles.
Esta oxidación puede ser iniciada por la reacción en fase gaseosa del dióxido de azufre con el radical hidróxilo, por las reacciones en fase líquida en las gotas de niebla, que incluyen el dióxido de azufre disuelto y agentes oxidantes tales como peróxido de hidrógeno o el ozono, o por reacciones en las superficies sólidas de los aerosoles. La separación de los aerosoles y gotas de niebla que contienen H2SO4 en forma de precipitaciones devuelve el azufre a la superficie de la Tierra y cierra el ciclo del azufre atmosférico (figura III 4).
La reacción más importante de oxidación en fase gaseosa del SO2 atmosférico es la de este producto con radicales libres como el hidróxilo, el hidroperoxilo y el metilperoxilo. Parece ser que, entre todos estos radicales, el hidróxilo es el principal responsable de esta oxidación:
De la misma manera que el ácido nítrico, también el ácido sulfúrico puede dar lugar a un proceso de transformación de gas a partículas sólidas por reacción, principalmente, con el amoniaco presente en la atmósfera:
La composición química del aerosol se caracteriza por las fracciones molares de los componentes NH4 HSO4 y (NH4)2SO4, que se pueden calcular si se conocen las concentraciones iniciales en fase gaseosa de los compuestos NH3 y H2SO4.